5 Everyday Objects Scientists MacGyvered Into Huge Advances

MacGyver can use spare change and a can of deodorant to build a nuclear missile, but that's Hollywood (or whatever the Canadian equivalent is) taking liberties, right? High technology is not a slapdash matter of stringing together office supplies and Easy Cheese until you have a laser ... or at least that's what they want you to think. In reality, human progress is often a matter of grabbing a fistful of whatever mundane object is nearest to you, then thinking at it as hard as you can until it turns into science. For example ...

#5. Cotton Candy Can Be Used to Create Artificial Human Organs

AvalancheZ/iStock/Getty Images

Cotton candy is one of those weird things that are absolutely worthless outside of a carnival setting, like bumper cars or people who fold balloons for a living. OK, fine, there's one use for cotton candy outside of tricking people into thinking they bought food: helping to grow artificial organs, thus saving countless human lives. But that's all we're giving you, Cotton Candy Industry.

Comstock/Stockbyte/Getty Images
You've got your pink-stained fingers wrapped around the world too tightly as it is.

This revelation came about when one Leon Bellan, a graduate student, was listening to a lecture in Cornell's Nanobiotechnology Center and the not-at-all-creepy thought came to him that cotton candy must look a lot like human veins under a microscope. (He had previously observed that nanofibers also look remarkably like Cheez Whiz, so apparently we have the perpetually hungry and penniless state of most students to thank for scientific breakthroughs.)

The microscopic size of human capillaries is both the key to and the major challenge of creating working organs from scratch. You can make as many fake spleens as you want, but if their cells aren't properly irrigated with blood, they won't be able to ... uh, spleen things out properly. Bellan's solution: Place some glittery sugar fluff in an organ-shaped mold, fill it with a special polymer, and then soak it in hot water and alcohol for several days to let the candy melt away. The result? The "organ" was now filled with an almost completely natural-looking network of microscopic channels.

Leon Bellan et al., via Soft Matter
Just remember to remove all the candy to prevent diabetes. Leave the alcohol.

To confirm that the new capillaries worked, Bellan pumped them with some fluorescent rat blood he presumably had laying around (you don't ask too many questions about the guy that sees human veins in carnival snacks) and just watched it flow. We still have to figure out how to hook up this artificial vascular network to a living host body, which isn't as easy as buying some knockoff Chinese adapter on eBay. However, this isn't the only recent advancement in the growing field of cotton candy-related nanobiotechnology: Scientists at Harvard have created a new method of manufacturing nanofibers that's based on cotton candy machines. And, yes, among the many possible applications are artificial organs and tissue regeneration.

Kit Parker, Disease Biophysics Group at the Harvard School of Engineering and Applied Sciences

"Let me get two cherry-flavored, one green apple, and a pancreas."

So there you go: We now know the secret to immortality. It's carny food.

#4. Scotch Tape Is the World's Cheapest X-ray Machine

Visage/Stockbyte/Getty Images

Scotch tape: It does everything. It seals paper together, cleans dust off screens, secures your eyelids to your forehead, making you look all gross -- truly it is a wonder material. And now scientists are seriously thinking they might be able to trigger nuclear fusion using Scotch tape, all thanks to the surprising amount of energy that the simple act of peeling the sticky layers can give out.

We have the good ol' USSR to thank for this discovery. Back in the '50s, Russian scientists found that, when stripped from glass inside a vacuum, Scotch tape would emit electrons, which suggested that there was a far easier and cheaper way to produce X-rays than we'd been using. This revolutionary finding made X-rays economical and accessible for the first time, which of course bored the scientific community to tears, and they essentially forgot all about it for the next 50 years. They had robots to build. We cannot blame Science for having its priorities straight.

koya79/iStock/Getty Images
"Look, guys, we'll never get to robot butlers unless we start working now."

Fast forward to 2007, when DARPA (the government agency responsible for useful stuff like the Internet, and slightly less useful stuff like robot hummingbirds) decided it wanted some new X-ray toys for battlefield applications. They threw money at UCLA to make it happen, but apparently not quite enough, because instead of inventing some sort of atomic ray-gun, the researchers went back to give the wacky old DIY Russian hypothesis a go. Here's what they found:

UCLA/Juan Escobar
Radiation poisoning?

The resulting X-ray charge when they peeled Scotch tape in a vacuum was strong enough to imprint the image of a bony finger on photographic paper. Who says you can't science on a budget?

In fact, the charge turned out to be 10 times greater than the UCLA scientists had hoped, and they have no idea why (it's partly because 3M, the company that makes Scotch tape, is as protective of their secret formula as Coca-Cola). We're talking about bursts of millions of X-ray photons at a time, which is why they think that triggering nuclear fusion from Scotch tape sounds like a scientific possibility, along with a new generation of X-ray telescopes 10 to 30 times better than the current ones and cheap, portable X-ray machines. Yes, the tricorder from Star Trek is now a reality, all thanks to lowly Scotch tape.

Via Tribogenics
Which makes it almost as useful as the tape by itself.

#3. M&M's Solved a 400-Year-Old Physics Problem

Jupiterimages/Creatas/Getty Images

Princeton professor Paul Chaikin has solved a problem that troubled physicists for hundreds of years, and he did it in the most delicious way possible. It all started when his students, either huge fans of the guy or really, really terrible at pranks, sneaked a 55-gallon drum of M&M's into his office.

Years passed, and the drum of candy stayed mostly intact, because it takes a truly epic amount of weed to cash 55 gallons of chocolate. Then one day Chaikin decided to use the M&M's as a class prop to talk about packing density. Let's say you want to fill a suitcase with as many eight balls of cocaine as possible. Assuming the balls are perfectly spherical (we ... don't know much about hard drugs. Can you tell?), science says that the absolute maximum you'll be able to fill is 74.048 percent of the suitcase. However, that's only if you take the time to arrange them in a perfect pattern -- if you randomly throw the drug-balls in there because the cops are coming and you don't have time to juggle(?) them up your nose, the maximum density is always 64 percent. This has been determined through centuries of careful mathematical study by awesomely bearded people.

Via Wikipedia
"Now let's figure out how to fit the other 36 percent into your anus."

It's always been assumed that perfectly spherical balls are the most effective shape for packing stuff. However, when Chaikin asked a student to measure the density of some M&M's randomly packed into a jar, he was shocked to find out that it was 68 percent -- way more than the 64 percent maximum thought possible in that situation. This means that not only is there a more effective shape for random packing than balls, but that shape ("oblate spheroids") happens to be the exact one of regular M&M's.

Amy Loves Yah CC-BY-2.0
Melts in your pre-existing understanding of physics, not in your hand.

But this discovery was only the thin sugary crust leading to an even more delicious scientific breakthrough. When Chaikin did tests with the ellipsoid -- a different M&M's-inspired shape -- it resulted in a randomly packed density of over 74 percent. Nobody had ever achieved that before, nor even really considered it possible.

This discovery could help us create better aerospace materials made out of tiny super-packed particles, make further advances in nanotechnology, or simply ship stuff at lower costs. Meanwhile, the Mars Company just nodded along, pretended to understand what this was about, and sent Chaikin a further 125 pounds of M&M's. Maybe he'll use them to create a warp drive or something.

Recommended For Your Pleasure

To turn on reply notifications, click here


The Cracked Podcast

Choosing to "Like" Cracked has no side effects, so what's the worst that could happen?

The Weekly Hit List

Sit back... Relax... We'll do all the work.
Get a weekly update on the best at Cracked. Subscribe now!